-
Science
- Math in Science
- Scientific Method
- Lab Safety
-
Atoms and Molecules
- History of the Atom
- Models for the Atom
- Subatomic Particles
- Periodic Table
- Periodic Trends
- Bonding
- Polyatomic Ions
-
Reactions
- Physical and Chemical Changes
- Reaction Types
- Stoichiometry
- Combustion
-
Acids/Bases
- Theory
- Equilibria
- Titration
-
Solutions
-
Redox
- Oxidation States
- Half-Reactions
- Redox Stoichiometry
- Electric Potential
- Gases
-
Thermochemistry
-
Quantum Theory
-
Nuclear
- Nuclear Particles
- Nuclear Reactions
- Power and Energy
-
Organic
- Nomenclature
- Alkanes
- Alkenes
- Alkynes
-
Resource Paks
- Periodic Table
Guest is currently logged in.
Avogadro's Law
Gases - Gas Laws |
NAS NSES Standards: G-Science as a human endeavor (1)
NAS NSES Standards: G-Nature of scientific knowledge (2)
NAS NSES Standards: G-Historical perspectives (1)
AAAS Project 2061 Benchmarks: 1C-H1*-The Scientific Enterprise
AAAS Project 2061 Benchmarks: 9B-H5-Symbolic Relationships
AAAS Project 2061 Benchmarks: 9B-H2a-Symbolic Relationships
AAAS Project 2061 Benchmarks: 9B-H2b-Symbolic Relationships
Wisconsin MAS Science: B.12.1-Nature of Science
History
Explore the discoverer's biography, including general facts about his life and anecdotes regarding how he made this particular discovery. Also see other significant scientific discoveries built largely on this concept and other real-world applications in history that may not still be relevant.
Discoverer/Developer
Avogadro's Law from 1811. Amedeo Avogadro (1776-1856) was an Italian physicist and lawyer. He taught physics in Turin, Italy. Avogadro published two memoirs, once in 1811, and the second in 1814. Both were published in French. Avogadro's Law was stated separately by Ampere in 1814, and the two are generally interchangeable, historically speaking.
Use/Application through History
Avogadro's Law is widely regarded as a significant contributor to the determination of atomic and molecular weights. Gaudin and Cannizzaro used Avogadro's law to determine atomic weights. Avogadro suggested the diatomic nature of many "elementary" gases, as did Dumas using Avogadro's Law. The Law also contributed to the determination of molecular formulae by demonstrating the ratios of combinations of gases, such as in the gases of water, hydrogen chloride, ammonia, and nitric oxide. Cannizzaro also used Avogadro's Law to "simplify the teaching of chemistry" and present a unified system consistent for chemical and physical observations. Avogadro's Law contributed to the development of the kinetic theory of matter. Avogadro's Law can also be applied to osmosis, which, in turn, allows the determination of molecular weights by osmotic pressure.
Concept Definition
Study the primary definition of this concept, broken into general, basic, and advanced English definitions. Also see the mathematical definition and any requisite background information, such as conditions or previous definitions.
General Science
Volume increases as the number of particles increases if temperature and pressure stay constant. Volume decreases as the number of particles decreases if temperature and pressure stay constant.
Basic
Volume and the number of particles of a gas are directly proportionate for a constant temperature and pressure.
Advanced
The ratio of volume (V) and the number of particles (n) of a gas is a constant. Volume and the number of particles of a gas are directly proportionate for a constant temperature and pressure.
Background Information
Ideal Gas
An "ideal gas" is a gas in which:
- All collisions are totally elastic (particles always bounce off each other)
- There are no intermolecular attractions (a particle can only change direction when it collides with another particle)
- The molecule is infinitely small (particles will come all the way together before they collide)
What does this mean? An ideal gas is a collection of bouncy-balls.
Real World Application
Discover processes or disciplines in the natural or man-made worlds that employ the concept.
Avogadro's Law, along with other gas laws, explains why bread and other baked goods rise. Yeast or other leavening agents in the dough break down the long carbohydrates from the flour or sugar and convert them into carbon dioxide gas and ethanol. The carbon dioxide forms bubbles, and, as the yeast continues to leaven the dough, the increase in the number of particles of carbon dioxide increase the volume of the bubbles, thereby puffing up the dough.
Avogadro's Law explains projectiles, like cannons and guns; the rapid reaction of the gunpowder very suddenly creates a large amount of gas particles--mostly carbon dioxide and nitrogen gases--which increase the volume of the space behind the cannon or bullet until the projectile has enough speed to leave the barrel.
A balloon inflates because of Avogadro's Law; the person blowing into the balloon is inputing a lot of gas particles, so the balloon increases in volume.
We breathe because of Avogadro's Law, among others; the lungs expand, so more gas particles can enter the lungs from the outside air (inhaling). Then the lungs contract, so the waste gas particles are expelled (exhaling).
Vocabulary
Learn important vocabulary for this concept, including words that might appear in assessments (tests, quizzes, homework, etc.) that indicate the use of this concept.
Computer Animations
Experience computer simulators or animations that illustrate the concept discussed here. Many simulators or animations come with worksheets for use in class.
Summary
Read a summary of the concept, indicating the enduring understanding students should retain after class.
If the pressure and temperature remain constant, increasing the number of particles of gas inside a container will increase the volume of the container. Likewise, decreasing the number of particles of gas inside a container will decrease the volume of the container.
Comments (0)